Gujarati
Hindi
3-2.Motion in Plane
hard

A particle starts from rest and performing circular motion of constant radius with speed given by $v = \alpha \sqrt x$ where $\alpha$ is a constant and $x$ is the distance covered. The correct graph of magnitude of its tangential acceleration $(a_t)$ and centripetal acceleration $(a_c)$ versus $t$ will be:

A
B
C
D

Solution

$\mathrm{v}=\alpha \sqrt{\mathrm{x}} \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\alpha \sqrt{\mathrm{x}} \Rightarrow \mathrm{x}=\frac{\alpha^{2} \mathrm{t}^{2}}{4}$
$a_{t}=v \frac{d v}{d x}=\alpha \sqrt{x} \cdot \frac{\alpha}{2 \sqrt{x}}=\frac{\alpha^{2}}{2}=$ constant
$a_{c}=\frac{v^{2}}{r}=\frac{\alpha^{2} x}{r}=\frac{\alpha^{2}}{r} \times \frac{\alpha^{2} t^{2}}{4}$
$a_{c} \propto t^{2}$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.